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STABILITY OF THERMAL VIBRATIONAL FLOW

IN AN INCLINED LIQUID LAYER

AGAINST FINITE-FREQUENCY VIBRATIONS

UDC 532.5B. L. Smorodin

Stability of the flow that arises under the action of a gravity force and streamwise finite-frequency vi-
brations in a nonuniformly heated inclined liquid layer is studied. By the Floquet method, linearized
convection equations in the Boussinesq approximation are analyzed. Stability of the flow against
planar, spiral, and three-dimensional perturbations is examined. It is shown that, at finite frequen-
cies, there are parametric-instability regions induced by planar perturbations. Depending on their
amplitude and frequency, vibrations may either stabilize the unstable ground state or destabilize the
liquid flow. The stability boundary for spiral perturbations is independent of vibration amplitude and
frequency.
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Introduction. Thermal vibrational convection has been the subject of many works, which were reviewed
in [1]. The interest in this problem is justified both from practical and theoretical points of view. A periodical
action, such as vibrations, exerts a strong influence on flow stability in static fields and can be used to control liquid
flows in various technological processes, for instance, in production of high-purity materials on board sky-labs. In
many works devoted to the study of the vibrational-convection problem, the case of small amplitudes and high
frequencies was addressed, and the effective averaging method was used [2]. In the high-frequency limit, owing to
the fact that the vibration period normally is short compared to characteristic hydrodynamic and thermal times of
the system, the vibration amplitude and frequency are not independent parameters, and resonance effects are not
observed.

The study of thermal vibrational convection under finite vibration frequencies is also of considerable interest.
Tests performed on board sky-labs provide evidence for the g-effect (jitter), when the acceleration field involves a
constant and a stationary component [3]. In many cases, the vibration amplitude and frequency are independent
parameters. In such situations, instability mechanisms related to parametric resonance are manifested. Various as-
pects of convection in initially stationary liquids under the action of vertical finite-frequency vibrations representing
gravity-force field modulations were examined in [4, 5]. Stability of thermovibrational flow that arises in a horizontal
liquid layer under the action of longitudinal vibrations of an arbitrary frequency against planar perturbations was
considered in [6] for zero-gravity conditions and in [7] for a static gravity field. The limiting cases of low and high
vibration frequencies were examined, and parametric-instability regions for finite frequencies of the external action
were determined.

However, in a gravity field, three-dimensional perturbations of thermovibrational flow, whose role was not
discussed in [7], may be even more dangerous than planar perturbations. The competition between planar and three-
dimensional instability modes in stationary convective flows was considered in [8]. During tilting of the horizontal
layer, stratification of the nonuniformly heated liquid gives rise to a thermogravitational flow, which may have a
profound effect on convective stability in the vibrational field. The mutual influence of the thermogravitational and
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vibrational instability mechanisms was previously considered for streamwise vibrations of the vertical layer only in
the high-frequency limit [9].

In the present work, convective stability of a nonstationary flow of a uniform incompressible liquid in a flat
layer under streamwise harmonic vibrations of finite frequency and amplitude is examined for arbitrary orientations
of the layer relative to the gravity force. For a periodical nonisothermal flow, an analog of the Squire transformations,
which make it possible to reduce the problem of stability against three-dimensional perturbations to a corresponding
two-dimensional problem, is obtained. The behavior of planar, spiral, and three-dimensional perturbations is
examined. It is shown that a static gravity field has a region of parameters in which stability of the flow both in
the horizontal and inclined layers is governed by spiral perturbations.

1. Problem Statement. Planar Perturbations. We consider a flat layer of a uniform liquid whose
boundaries are heated to different temperatures (T = ∓Θ) and form an angle α0 with the vertical direction. The
whole layer is in a static field of a gravity force g0 and subjected to linear harmonic vibrations in the direction
of the axis x parallel to its boundaries. The coordinates of the rigid planes restricting the flow are z = ±h. The
case where vibrational velocities are much lower than acoustic ones is analogous to the case with modulation of the
gravity field according to the law g = g0 + bΩ2n sin (Ωt), where n = (1, 0, 0) is the unit vector along the vibration
axis, Ω is the angular frequency, and b is the displacement amplitude.

Using the quantity h as a distance scale, h2/ν as a time scale, ν/h as a velocity scale, Θ as a temperature
scale, and ρν2/h2 as a pressure scale (ρ is the density of the liquid and ν is the kinematic viscosity), we write the
convection equations in the Boussinesq approximation in the oscillating coordinate system:

∂v

∂t
+ (v∇)v = −∇p+ ∆v + GrvibTn sin (ωt) + GrT ·m,

∂T

∂t
+ v∇T =

1
Pr

∆T, div v = 0, m = (cosα0, 0, sinα0), (1)

z = ±1: v = 0, T = ∓1.

Here v is the velocity, p is the pressure, T is the temperature counted from a certain mean value, Gr = g0βTΘh3/ν2 is
the Grashof number, Grvib = bΩ2βTΘh3/ν2 is the vibrational analog of the Grashof number, βT is the thermal-
expansion coefficient, Pr = ν/χ is the Prandtl number, χ is the thermal diffusivity of the liquid, and ω = Ωh2/ν is
the dimensionless vibration frequency.

We can obtain an exact solution of system (1) in which the temperature field depends only on the cross-
flow coordinate [T0 = T0(z)] and generates a periodical plane-parallel flow with a nonzero streamwise velocity
v0(v0(z, t), 0, 0). This solution satisfies the boundary conditions

z = ±1: v0 = 0, T0 = ∓1 (2)

and the flow-closure requirement
1∫
−1

v0 dz = 0. (3)

From (1)–(3), we can find the velocity and temperature distributions in the ground state:

v0 = (Gr/6)(z3 − z) cosα0 + GrvibV0(ω, z, t) = Grf1(z) cosα0 + Grvibf2(ω, z), T0 = −z. (4)

Thus, in the layer there arises a combined two-component flow with a velocity v0. The first (thermogravitational)
component with a cubic velocity profile is established in the layer even under no-vibration conditions. The intensity
of this flow depends on the inclination angle of the layer: this intensity is maximal if the layer is oriented vertically
(α0 = 0) and equals zero if α0 = 90◦. The velocity profile of the second (thermovibrational) component depends
on the vibration frequency and amplitude [6]:

V0 = Vc(z, ω) cos (ωt) + Vs(z, ω) sin (ωt),

Vc =
1
ω

(
z +

cosh α cosβ − cosh β cosα
cos 2æ− cosh 2æ

)
, Vs =

1
ω

sinh α sinβ − sinh β sinα
cos 2æ− cosh 2æ

, (5)

α = æ(1 + z), β = æ(1− z), æ =
√
ω/2.
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Let us consider weak planar ground-state perturbations (5) v′(v′x, 0, v
′
z) [v′x = v′x(x, z, t), v′z = v′z(x, z, t)],

T ′(x, z, t), and p′(x, z, t). Substituting the disturbed fields into the initial system (1) and performing linearization
near the ground state, we obtain a system of equations for the perturbations. We introduce the stream function Ψ′

for velocity perturbations

v′x = −∂Ψ′

∂z
, v′z =

∂Ψ′

∂x
(6)

and consider disturbances of the “normal”-mode type:

Ψ′(x, z, t) = ϕ(z, t) exp (ikx), T ′(x, z, t) = θ(z, t) exp (ikx). (7)

Here ϕ and θ are the amplitudes and k is the wavenumber that describes the spatial periodicity of the perturbations.
Substituting (6) and (7) into the equations for the perturbations and routinely eliminating the pressure, we obtain
the following system of amplitude equations:

∂∆ϕ
∂t

+ ikĤ(v0)ϕ = ∆2ϕ+ Gr(ikθ sinα0 − θ′ cosα0)−Grvibθ
′ sin (ωt),

∂θ

∂t
− ikϕ+ ikv0θ =

1
Pr

∆θ, ∆ ≡ d2

dz2
− k2, Ĥ(v0)ϕ ≡ v0∆ϕ− ϕv′′0 , (8)

z = ±1: ϕ = ϕ′ = 0, θ = 0.

Hereinafter, the prime denotes differentiation with respect to the transverse coordinate z.
The amplitude problem (8) determines the behavior of “normal” perturbations. In the general case, to

determine the stability limit for an arbitrary vibration amplitude and arbitrary vibration frequency, one has to use
the Floquet theory [10]; with the help of this theory, existence conditions for periodical solutions of the amplitude
problem can be found. To approximate the stream-function and temperature perturbations, we use sets of three-
dimensional basis functions with time-dependent coefficients

ϕ =
M−1∑
m=0

am(t)ϕm, θ =
M−1∑
m=0

bm(t)θm, (9)

where M is the total number of the basis functions. As the basis functions ϕm and θm, we used the eigenfunctions
of the problem of decaying perturbations in a stationary layer [8]. Inserting series expansions (9) into system (8)
and performing orthogonalization by the Galerkin method, we obtain a set of ordinary differential equations for the
coefficients am(t) and bm(t), which can be integrated by the Runge–Kutta method. For arbitrary values of problem
parameters, the solution of the problem of perturbations may be either growing in value or decaying. The stability
boundary corresponds to periodical perturbations: subharmonic ones with a period twice longer than the period of
the external action or synchronous ones whose period coincides with that of the vibrations.

All computations were performed for the unit Prandtl number Pr = 1, for which the thermogravitational
flow in the static field of the gravity force is unstable against the monotonic hydrodynamic mode. Hence, without
vibrations, the perturbations at the stability boundary are stationary — the characteristic frequency of neutral
oscillations ω0 vanishes. This results in the fact that no quasi-periodic (two-frequency) perturbations occur if the
flow experiences a periodic external action of frequency ω. For the majority of the solutions found, we used 16 basis
functions (M = 8). In test computations performed with 20 basis functions (M = 10), the convection threshold
varied by no more than 1%.

The stability boundaries on the plane (Grvib,Gr) as functions of the inclination angle α0 of the layer are
shown in Fig. 1 for various modulation frequencies. The stability regions are bounded by the curves Gr = f(Grvib)
and by the coordinate axes. It should be noted that, as in the case of a horizontal layer [7], only synchronous-response
perturbations were found in the examined range of parameters. Depending on the inclination angle of the layer and
also on the vibration amplitude and frequency, the interplay of the vibrational and thermogravitational instability
mechanisms may result either in stabilization or destabilization of the ground state. The limiting case Gr→ 0 refers
to a developed vibrational flow influenced by a weak thermogravitational flow. This influence is ambiguous: for
inclination angles of the layer to the vertical larger than a certain critical angle α∗(ω), the vibrational-convection
threshold decreases with increasing Grashof number Gr, whereas in the case of α0 < α0∗(ω), the vibrational flow
becomes more stable. The limit Grvib → 0 refers to weak vibrations influencing a developed thermogravitational
flow. Depending on the inclination angle of the layer and frequency, either suppression of instability, for instance,
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Fig. 1. Critical Grashof number Gr versus Grvib for various inclination angles of the layer and ω = 2π (a), 4π (b), and 6π (c).

at α0 = 70 and 80◦ and ω = 2π (Fig. 1a), or a decrease in the threshold value of Gr for growing perturbations is
possible.

In the range of 90◦ < α0 < 50◦, the position of the stability region in the case of strong vibrations
[Grvib > Grv∗(ω)] changes insignificantly. Such a situation is observed when the intensity of the thermogravi-
tational component of the main flow is much lower than the intensity of the thermovibrational component. For
instance, at ω = 2π (Fig. 1a), the threshold Grashof number is Grv∗ ≈ 250. An increase in the vibration frequency
results in a displacement of the thermovibrational-flow region toward the layer boundaries, thus narrowing the
range of vibration amplitudes under which the thermogravitational flow only weakly affects the thermovibrational
component. In the high-frequency limit, mutual influence of the instability mechanisms for the thermogravitational
flow and the stratified liquid in the high-frequency vibrational field is observed.

At ω = 4π (Fig. 1b), the stability boundary for some inclination angles (α0 = 80, 0, and −20◦) consists of two
segments; near the intersection point of these segments, perturbations with different spatial periods compete with
each other. At sufficiently high frequencies (ω = 6π), the stability boundary Gr(Grvib) may have a nonuniqueness
segment at α0 = 20–50◦ (Fig. 1c), which is related to the suppression of vibrational instability by a sufficiently
intense thermogravitational flow.

2. Three-Dimensional Perturbations. Addressing stability of a thermovibrational flow against three-
dimensional perturbations in a finite-frequency vibration field, one has to use the Squire transformations, which allow
one to reduce the problem of stability of plane-parallel flows against three-dimensional perturbations to the problem

47



of planar perturbations [8]. With known threshold characteristics of flow instability against planar perturbations,
the passage formulas allow one to recalculate critical convective-instability parameters for three-dimensional modes
and study the competition of various types of perturbations.

We consider the amplitude problem that characterizes the behavior of normal three-dimensional perturba-
tions in the case of a combined thermovibrational-thermogravitational flow (4). We assume that all perturbations
vary periodically in the plane (x, y) of the layer and the flow velocity has three components:

(vx, vy, vz, T, p) ∼ exp (ikxx+ ikyy).

Here kx and ky are the components of the wave vector. The amplitude equations for three-dimensional perturbations,
written in terms of velocity, and the boundary conditions for these equations have the form
∂vx
∂t

+ikx(Grf1 cosα0+Grvibf2(ω))vx+(Grf ′1 cosα0+Grvibf
′
2(ω))vz = −ikxp+v′′x−k2vx+Grθ cosα0+Grvibθ sin (ωt),

∂vy
∂t

+ ikx(Grf1 cosα0 + Grvibf2(ω))vy = −ikyp+ v′′y − k2vy,

∂vz
∂t

+ ikx(Grf1 cosα0 + Grvibf2(ω))vz = −p′ + v′′z − k2vz + Grθ sinα0,

∂θ

∂t
− vz + ikx(Grf1 cosα0 + Grvibf2(ω))θ =

1
Pr

(θ′′ − k2θ),
(10)

ikxvx + ikyvy + v′z = 0, k2 = k2
x + k2

y,

z = ±1: vx = vy = vz = 0, θ = 0.

The boundary-value problem for planar perturbations

(v̄x, v̄z, T̄ , p̄) ∼ exp (ik̄x)

can be obtained from (10), if we set vy = 0 and ky = 0 (we mark all unknown functions and parameters in the
planar problem with a bar over these quantities).

We rewrite the amplitude problem (10) for planar perturbations as

∂v̄x
∂t

+ ik̄(Ḡrf1 cos ᾱ0 + Ḡrvibf2(ω̄))v̄x + (Ḡrf ′1 cos ᾱ0 + Ḡrvibf
′
2(ω̄))v̄z

= −ik̄p̄+ v̄′′x − k̄2v̄x + Ḡrθ̄ cos ᾱ0 + Ḡrvibθ̄ sin (ω̄t),

∂v̄z
∂t

+ ik̄(Ḡrf1 cos ᾱ0 + Ḡrvibf2(ω̄))v̄z = −p̄′ + v̄′′z − k̄2v̄z + Ḡrθ̄ sin ᾱ0,

∂θ̄

∂t
− v̄z + ik̄(Ḡrf1 cos ᾱ0 + Ḡrvibf2(ω̄))θ̄ =

1
P̄r

(θ̄′′ − k̄2θ̄), ik̄xv̄x + v̄′z = 0,
(11)

z = ±1: v̄x = v̄z = 0, θ̄ = 0.

The three-dimensional problem (10) can be reduced to the two-dimensional problem (11) using the following
transformations:

vz = v̄z, kxvx + kyvy = k̄v̄x, p = p̄, θ = θ̄, ω = ω̄,

Pr = P̄r , k2 = k̄2, kxGrvib = k̄Ḡrvib, kxGr cosα0 = k̄Ḡr cos ᾱ0,

Gr sinα0 = Ḡr sin ᾱ0.

Thus, in passing to three-dimensional perturbations, the vibrational and thermal Grashof numbers, the modulation
frequency, the wavenumber, and the inclination angle should be transformed as follows:

Grvib = Ḡrvib/a, Gr = Ḡr
√

sin2 ᾱ0 + cos2 ᾱ0/a,
(12)

ω = ω̄, k ≡
√
k2
x + k2

y = k̄, tan α0 = a tan ᾱ0.
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Fig. 2. Stability boundaries at α0 = 45◦ for ω = 2π (a) and 6π (b).

The parameter a characterizes three-dimensional perturbations:

a = kx/
√
k2
x + k2

y = kx/k̄.

In the case of a vertical liquid layer (α0 = 0), it follows from (12) that

ᾱ0 = 0, Gr = Ḡr/a, Grvib = Ḡrvib/a.

Since the parameter a ranges in the interval (0, 1), then, as in the high-frequency limit [1], we have Gr > Ḡr and
Grvib > Ḡrvib, i.e., planar perturbations are more dangerous than three-dimensional ones.

In the case of a horizontally oriented layer (α0 = ±90◦), the main flow has only a thermovibrational
component; in this case, it follows from (12) that

ᾱ0 = ±90◦, Gr = Ḡr, Grvib = Ḡrvib/a.

Thus, in the case in which the vibrations destabilize the equilibrium, the boundary of stability of the flow
against three-dimensional perturbations undoubtedly lies in the region where two-dimensional perturbations are
unstable, with a degeneration at the point Grvib = 0. In this case, planar and three-dimensional perturbations are
equally dangerous. If vibrations stabilize the equilibrium of the liquid with respect to planar perturbations, then a
competition between planar and three-dimensional modes is possible.

Figure 2 shows the boundaries of stability against three-dimensional perturbations for various values of a
at α0 = 45◦ and ω = 2π and 6π. At low vibration amplitudes (Grvib → 0), as it follows from Fig. 2, a decrease
in the parameter a below a certain critical value results in a decrease in the threshold Gr number; here, the most
dangerous perturbations are spiral ones (a = 0, the instability boundary transforms into a straight line parallel to
the Grvib-axis). At a low intensity of the thermogravitational flow (Gr→ 0), a decrease in a results in an increase
of the critical vibration amplitude Grvib corresponding to the threshold of stability; hence, the most dangerous
perturbations here are planar perturbations (a = 1).

The actual scenario of evolution of the stability boundary during the passage from planar (a = 1) to spiral
perturbations (a = 0) depends on vibration frequency. At ω = 2π (Fig. 2a), the dependence Gr = f(Grvib) for
planar perturbations displays a local maximum in the region of Grvib ≈ 600. With decreasing a, this maximum is
shifted toward higher values of Grvib and then becomes an absolute one, displaced to infinity. At ω = 6π (Fig. 2b),
the dependence Gr = f(Grvib) for all values of a has only one maximum at Grvib = 0. At a = 0.2 and 0.4, the
dependences Gr = f(Grvib) are parabolic; in this case, vibrations destabilize the equilibrium with respect to these
three-dimensional modes.
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Fig. 3. Stability boundaries for a horizontal layer (α0 = 90◦) for ω =
π (1) and 8π (2); the dashed curve refers to the stability boundary for
the spiral mode Grsp.

The stability boundary for spiral perturbations (a = 0) can be found from (10) with kx = 0:
∂vx
∂t

= v′′x − k2
yvx + Grθ cosα0 + Grvibθ sin (ωt),

∂vy
∂t

= −ikyp+ v′′y − k2
yvy,

∂vz
∂t

= −p′ + v′′z − k2
yvz + Grθ sinα0,

∂θ

∂t
− vz =

1
Pr

(θ′′ − k2
yθ), ikyvy + v′z = 0, (13)

z = ±1: vx = vy = vz = 0, θ = 0.

The critical Grashof number for spiral perturbations Grsp is independent of vibration amplitude and fre-
quency. The latter parameters affect only the intensity of the disturbed flow along convective rollers. An analysis
of Eqs. (13) shows that the Grashof number Grsp corresponds to the case of a vibration-free thermogravitational
flow: Gr = 106.7/(Pr sinα0) [8]. The region where the combined thermogravitational-thermovibrational flow is
absolutely stable (Fig. 2) lies between the coordinate axes, the horizontal boundary for spiral perturbations (a = 0),
and the right-hand boundary for planar perturbations (a = 1).

In the case of a horizontally oriented layer (α0 = 90◦), the stability boundary for spiral and planar pertur-
bations are shown in Fig. 3. Curves 1 and 2 show the results gained in [7]. It follows from Fig. 3 that the stability
threshold for ω = 8π is fully determined by the behavior of planar perturbations. In the case of ω = π, in the range
of vibrational Grashof numbers 0 < Grvib < 683.8, the instability boundary (Gr = 106.7) is determined by spiral
perturbations; at higher vibration amplitudes (Grvib > 683.8), planar perturbations grow in value on the curve
Gr = f(Grvib).

Summary. Using the Floquet theory, we have considered the problem of instability of a uniform flow of
an inclined liquid layer under the action of a gravity force and streamwise finite-frequency perturbations. In the
case of planar perturbations, either destabilization or stabilization of the ground state is possible depending on
the characteristics of the parametric action. In the examined range of inclination angles of the layer, vibration
amplitudes, and vibration frequencies, flow instability is caused by in-phase perturbations. For the case of a
periodical thermovibrational flow, transformations are obtained that relate characteristics of planar and three-
dimensional perturbations. It is shown that, generally, stability of the main flow can be violated either by spiral or
by planar perturbations. The critical characteristics of spiral perturbations are independent of vibration amplitude
and frequency.
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